

SENIOR DESIGN EXPERIENCE MAY 2019

Yogurt Production

Agricultural Biological

Biological Engineering Students: Timothy Jergens, Giulia Olivieri, Anthony Park

OBJECTIVE

To create a sustainable meyhod of yogurt production while minimizing design criteria

BACKGROUND

- According to Health.gov, 75% of people don't meet the daily dairy requirments
- Current industry is predominantly run by a few big name brands
- Increased interest in local manufacturers

UNIT OPERATIONS & OPT. CRITERIA

Unit Operation	Optimization Variable
Pasteurization	Pressure & Time
Homogenization	Pressure & Gap Size
Fermentation	Time & Temperature
Cooling	Temperature

EVALUATION OF ALTERNATIVES

- 1. Milk: whole milk vs skim milk
- 2. Pasteurization: raw vs pre-pastuerized
- 3. Fermentation: unstirred with temperature control vs without temperature control, varying duration of fermentation process, varying target pH
- 4. Cooling: cooling tunnel vs storing in fridge room

CONSTRAINTS & DECISION MAKING

- 1. Cost: this process will recycle heat from the cooling to the pasteuriuzaton step.
- 2. Nutrition: vitamin concentrations will vary
- 3. Tatste: different variables (pH, fat globule size, etc...) impact the product quality

PROCESS FLOW

IMPACT & SUSTAINABILITY

- Increase dairy consumptiom
- Promote healthy snacks
- Ethically and locally sourced raw materials
- Waste disposal
- Abundance of raw materials
- Job creation
- Highly demanded product
- International expansion

PROCES EXPERIMENT

Product Composition:

Serving Size 1 cup (7.9 oz) Ingredients Used:

- whole milk
- commercial yogurt with live active cultures

Calories Per serving Per container Total Fat 3.5g 4% 15.75g 20% Saturated Fat 2g 10% 9g 45% Trans Fat 0g 0g 67.5mg 23% Cholesterol 15mg 5% 67.5mg 23% Sodium 150mg 7% 67.5mg 29% Total Carbs. 15g 5% 67.5g 25% Dietary Fiber 0g 0% 67.5g 25% Incl. Added Sugars 0g 0% 67.5g 90% Vitamin D 0mcg 0% 0mcg 0% Vitamin D 0mcg 0% 0mcg 0% Potassium 0mg 0% 0mg 0% Vitamin A 2% 8% 25% Thiamin 10% 45% 45% Riboflavin 40% 35% 90% Vitamin B6 8%

Nutrition Facts

ECONOMIC ANALYSIS

RECOMMENDATIONS

- Test quality with different types of milk
- Experiment by adding different flavors or fruits

Bylund, G. (1995). *Dairy Processing Handbook.* Lund: Tetra Pak Processing Systems AB.

Peters, M. S., Timmerhaius, K. D., & West, R. E. (1958). *Plant Design and Economics for Chemical Engineers*. Denver: McGraw-Hill Inc.

Sponsor: Agricultural & Biological Engineering Department

Acknowledgments: Dr. Okos, Alyssa Christoffer, Coleen Riley & Troy Tonner

Purdue University is an equal opportunity/equal access institution.